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Model Introduction




Vortices

 Rotating mass of liquid or gas in a region

e Bounded at edges

e In tornadoes, found to begin as long,
straight vortices that “fold up” on
themselves as they dissipate energy to
their surroundings




Vorticity Field

» Given vector field of velocity field u(x), construct the vorticity field,
£(x) := curl u(x)

» A vortex is a collection of integral curves of the vorticity field, §(x)

u(x) £ (x)




Energy of a Vortex

e Assume that vorticity is only non-zero in a collection of
thin vortex tubes, T, or if infinitely thin, vortex filament

 Emnergy of such vortex given below

1 §(x)-€x')
E_&’T[r[r x— x| dx dx.

Dot product of vorticities over distance of points

e Intuition: Nearby parallel components
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Modeling Idea

 (Construct a vortex filament path in the cubic
lattice for modeling vortices: Analyze the
patterns of configurations and their energies

e Former Work: Analyzed this model on open
vortices

e Studied average energies, min and max
configurations, patterns as N grows




Vortices in the Cubic
Lattice



Self-avoiding Walks and Polygons

 Self-avoiding walk (SAW) versus self-avoiding polygon (SAP) in 73

« SAWSs can model open vortices, SAPs for closed-loop vortices
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Discretization of Energy Formula

 (Consider our original energy formula across vortex filament T

E——/ / S x—x’\ )dx’dx.

e Reduce the formula to a double sum across the SAW or SAP

o= 8ﬂzz\mz—m3\

)

@ Note: Negative energy configurations :




Statistical Background
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Boltzmann Probability Distribution — Statistical Mechanics

 Provided a set of states with corresponding energies Ei,...,.E,
 Probability of achieving a single state given by
—BE; n
e
1=

e [is inverse of kg times statistical temperature T

e When =0, each state equally likely, when 5>0, lower energy
configurations more likely, when $<0, high energy

n
e (an calculate average energy: b= E szz
1=1
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Metropolis Markov-Chain Monte Carlo

 The Metropolis MCMC Algorithm allows us to generate a
sequence of samples and accept /reject to approximate distribution

e Given a SAP si1, and a new proposal for sequence n, acceptance
probability given by
f(ne)

f(St—l)

Pt mm( y 1)

min(e_ﬁ(E’”t _Est—l), 1)




Transformations

 What is finally required is a set of transformations that given a
current SAP si1, can propose a new SAP n: which is accepted with
probability described before

e Use transformations described by Madras, Orlitsky, Shepp
symimetries

e Lrgodicity, symmetric, local




Research Question and Former Work

Former work done in modeling open tornadic vortices as SAWs

Maximum energy configuration proven to be straight

- Maximum energy follows N log(N) pattern where N is SAW length

Minimum energy configurations can be tricky to find

— Minimum energy follows linear decreasing pattern

— Small, balled-up or folded-up configurations

- Start point near endpoint, suggesting “wanting to close”

Q: How does this model hold over closed-loop vortices as SAPs?

* Q: Do minimum energy SAPs correspond with minimum energy SAWs




Enumeration and Small N
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Number of SAPs

e As length of configuration, N, grows, number of configurations grows
exponentially

 Enumerated SAPs up to length 16 by backtracking, calculated energies directly

N | |SAPy| | Min Eng | Max Eng N . /
i 3 “0.15915 | -0.15915

6 29 -0.21542 | -0.15233 - /

8 207 -0.36493 | 0.01680 . e

10| 2412 | -0.39523 | 0.13567 g o P

12| 31754 | -0.51877 | 0.34702 =7

14 | 452 640 | -0.59807 | 0.53220

16 | 6 840 774 | -0.68339 | 0.78257

TABLE 1. Number of SAPs of
length N from length 4 to 16 with
minimum and maximum energies to
five decimal points.

Ficure 13. Plot of minimum and
maximum energies for lengths 4

through 16.




Maximum and Minimum Configurations

« Maximum energy configurations simple, nearest-square configuration
— For N divisible by 4, N/4 by N /4 square
- Otherwise, (N-2)/4 by (N+2)/4 rectangle

e Similar to SAWs, minimum energy configurations more interesting

— Folded-up configurations
— Seemingly linear decreasing pattern
— Trickier to “guess”

e See configurations on next slide
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Min SAP 6 Min SAFP 8 Min SAP 10

|

Min SAP 16

F1GURE 14. Minimum energy SAPs for lengths 6 though 16.



Energy

Average Energy vs 8 Curves

Length 8 Energy vs B
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Comparison of Minima SAPs and SAWs

 For small N, directly compared minimum energy SAWs to SAPs
due to SAWs wanting to close on themselves

Min SAPs vs SAWs to SAPs
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New Maximum
Configuration
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Double-Loop Configuration

* Interesting new pattern discovered for N > 34
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Triple-Loop Configuration

e Pattern for N > 54




Quadruple-Loop Configuration

e N =282




Double and Triple-Loop Energies

Square, Double, and Triple Loop SAPs
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Issue with MCMC
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Issue with MCMC

Length 54 Madras B vs Average Energy
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Takeaways and Future Work

e Enumeration through length 16, exact minima
 Implementation of transformations for MCMC with SAPs

e Minimum energy SAPs and SAWs were not exact in general (19)
e Discovery of new maximum energy configuration

e Future Work: Test/create new moves to discover multi-loops
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Thank you!!
Questions?
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