
Numerical Methods I Overview∗

Filip Belik

August 30, 2023

1 Matrix-Vector Multiplication

Theorem 1. range(A) is the space spanned by the columns of A.

Theorem 2. A matrix A ∈ Cm×n with m ≥ n has full rank if and only if it
maps no two distinct vectors to the same vector.

Theorem 3. The following conditions are equivalent for A ∈ Cm×m

1. A has an inverse A−1,

2. rank(A) = m,

3. null(A) = {⃗0},

4. 0 is not an eigenvalue of A,

5. 0 is not a singular value of A,

6. det(A) ̸= 0.

2 Orthogonal Vectors and Matrices

A matrix A is hermitian if A∗ = A.
A pair of vectors x, y ∈ Cm are orthogonal if x∗y = 0. A set of vectors

is orthogonal if each pair of vectors in it are orthogonal and all vectors are
non-zero. A set of vectors S is orthonormal if it is orthogonal, and ∥x∥ = 1
for each x ∈ S

∗Sources: Trefethen and Bau Numerical Linear Algebra and Class

1

Theorem 4. The vectors in an orthogonal set are linearly independent.

Given a set of orthonormal vectors {q1, q2, . . . , qn}, and v an arbitrary
vector, the vector

r = v − (q∗1v)q1 − (q∗2v)q2 − · · · − (q∗nv)qn

is orthogonal to each qi. We are subtracting the components of v in the
direction of each qi. This also tells us that v can be decomposed into n + 1
orthogonal elements

v = r +
n∑

i=1

(q∗i v)qi.

A square matrix is unitary if Q∗ = Q−1. Unitary matrices carry the
following properties

1. Unitary matrices preserve inner products: (Qx)∗(Qy) = x∗y,

2. Unitary matrices preserve lengths: ∥Qx∥ = ∥x∥ and ∥yQ∥ = ∥Q∥,

3. Determinant of ±1, so each eigenvalue has magnitude ±1, causes rota-
tion and reflection, not stretching.

3 Norms

A vector norm is a function ∥·∥ : Cm → R which satisfies the following
properties (∀x, y ∈ Cm, α ∈ C):

1. ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0⃗,

2. ∥x+ y∥ ≤ ∥x∥+ ∥y∥,

3. ∥αx∥ = |α|∥x∥.

The p-norm of a vector x ∈ Cm is given by

∥x∥p =

(
m∑
i=1

|xi|p
)1/p

for 1 ≤ p < ∞. In the limit as p → ∞, the ∞-norm of x is given by

∥x∥∞ = max
1≤i≤m

|xi|.

2

Figure 1: SVD of a 2× 2 matrix.

Given A ∈ Cm×n, and vector norms ∥·∥(m) and ∥·∥(n), the induced ma-
trix norm ∥A∥(m,n) is given by

∥A∥(m,n) = sup
x∈Cn,∥x∥(n)=1

∥Ax∥(m).

The 1-norm of a matrix is equal to the maximum column sum of A. The
∞-norm is equal to the maximum row sum of A.

The Hölder inequality says that for any vectors x and y,

|x∗y| ≤ ∥x∥(p)∥y∥(q)

for 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1. The Cauchy Schwartz inequality
is the special case of this for p = q = 2:

|x∗y| ≤ ∥x∥(2)∥y∥(2)

Theorem 5. For any A ∈ Cm×n and unitary Q ∈ Cm×n, we have

∥QA∥2 = ∥A∥2, ∥QA∥F = ∥A∥F .

Similarly, it can be shown that

∥AQ∥2 = ∥A∥2, ∥AQ∥F = ∥A∥F .

4 The Singular Value Decomposition

The SVD is motivated by the fact that the image of the unit sphere under
any m× n matrix is a hyperellipse. This is visualized in Figure 1.

3

Figure 2: Visualization of full and reduced SVDs.

Given any A ∈ Cm×n, it can be decomposed into A = UΣV ∗ where U ∈
Cm×m and V ∈ Cn×n are unitary, and Σ ∈ Cm×n is diagonal with descending
diagonal elements. This is called the Singular Value Decomposition or
SVD of A. The diagonal elements of Σ, denoted σi, are the singular values.
The columns of V (or rows of V ∗) are the right singular vectors. And the
columns of U are the left singular vectors. The algebraic relation between
these quantities is given by

Avi = σiui

for 1 ≤ i ≤ n.
The reduced SVD of A is given by A = ÛΣ̂V̂ ∗ where Û ∈ Cm×n,

Σ̂ ∈ Cn×n, and V̂ ∈ Cn×n. To get from the reduced SVD to the full SVD,
we extend Û with m − n orthonormal columns, and Σ̂ by m − n zero-rows.
This is displayed in Figure 2.

Theorem 6. Every matrix A ∈ Cm×n has a singular value decomposition.
Furthermore, the singular values are uniquely determined, and if A is square,
and each σi distinct, then the left and right singular values are uniquely
determined up to complex signs.

4

5 More on the SVD

Theorem 7. The rank of A is equal to the number of nonzero singular values.
Or rank(A) = rank(Σ) = r.

Theorem 8. The range of A is given by ⟨u1, . . . , ur⟩, the span of the first
r left singular values, and the nullspace is given by ⟨vr+1, . . . , vn⟩, the last
n− r right singular values.

Theorem 9. ∥A∥2 = σ1 and ∥A∥F =
√

σ2
1 + · · · σ2

r .

Theorem 10. The nonzero singular values of A are the square roots of the
nonzero eigenvalues of A∗A or AA∗.

Theorem 11. If A is hermitian, A = A∗, then the singular values of A are
the absolute values of the eigenvalues of A.

Theorem 12. For A ∈ Cm×m, then the absolute value of the determinant
of A is given by

| det(A)| =
m∏
i=1

σi.

Theorem 13. A can be written as the sum of r rank-one matrices

A =
r∑

j=1

σjujv
∗
j .

Theorem 14. For any ν with 0 ≤ ν ≤ r, define

Aν =
ν∑

j=1

σjujv
∗
j .

Then
∥A− Aν∥2 = inf

B∈Cm×n,rank(B)≤ν
∥A−B∥2 = σν+1.

Theorem 15. For any ν with 0 ≤ ν ≤ r, the matrix Aν also satisfies

∥A− Aν∥F = inf
B∈Cm×n,rank(B)≤ν

∥A−B∥F =
√
σ2
ν+1 + · · ·+ σr.

The methods for computing the SVD is a complicated subject, but once
it is computed, it is very helpful. For example, we can then easily determine
the rank, an orthonormal basis of the range or nullspace, the two-norm, the
Frobenius norm, and more.

5

Figure 3: An oblique projector.

6 Projectors

A projector is a square matrix P that satisfies P 2 = P . It is also called
indepotent. It is an oblique projector if it is not orthogonal. This is
visualized in Figure 3.

The complementary projector to a projector P is another projector
given by (I − P). It satisfies that

range(I − P) = null(P), null(I − P) = range(P).

This gives us the helpful fact that

range(P) ∩ null(P) = {0}.

Geometrically, a projector separates Cm into two spaces. Calling them S1

and S2, we say that P projects onto S1 along S2.
An orthogonal projector is a projector that projects onto a space S1

along a space S2 where S1 and S2 are orthogonal.

Theorem 16. A projector P is orthogonal if and only if P is hermitian,
P = P ∗.

Denoting unit length basis vectors for S1 as s1, s2, . . . , sn, and unit length
basis vectors for S2 as sn+1, sn+2, . . . , sm, we can construct the matrix

Q =
[
s1 s2 · · · sn sn+1 sn+2 · · · sm

]
.

6

Then, applying P to it results in

PQ =
[
s1 s2 · · · sn 0⃗ 0⃗ · · · 0⃗

]
.

And since the columns of Q are orthonormal, we have that

Q∗PQ = Σ =

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0

.

Hence, we have an SVD for P as

P = QΣQ∗.

We can arbitrarily define an orthogonal rank one projector onto the span
of any vector a by

P =
aa∗

a∗a
.

Similarly, given linearly independent vectors a1, a2, . . . , an, defining the ma-
trix A with column i as ai, we can define the orthogonal projector onto
⟨a1, a2, . . . , an⟩ by

P = A(A∗A)−1A∗.

7 QR Factorization

The reduced QR factorization of a matrix A is A = Q̂R̂ where Q̂ ∈ Cm×n

has orthonormal columns and R̂ ∈ Cn×n is upper triangular. In the full QR
factorization, we append m− n orthonormal columns to Q̂ to form Q, and
we append m− n rows of zeros to R̂, to form A = QR with Q ∈ Cm×m and
R ∈ Cm×n. This is visualized in Figure 4.

The Classical Gram-Schmidt Algorithm is an unstable algorithm that
provides existence and uniqueness for QR factorizations. It is detailed in
Figure 5.

7

Figure 4: Visualization of full and reduced QRs.

Figure 5: Classial Gram-Schmidt Algorithm.

8

Figure 6: Modified Gram-Schmidt Algorithm.

Theorem 17. Every A ∈ Cm×n with (m ≥ n) has a full QR factorization,
hence also a reduced QR factorization.

Theorem 18. Every A ∈ Cm×n with (m ≥ n) of full rank has a unique
reduced QR factorization with nonnegative diagonal entries.

Note that equations of the form Ax = b can be solved much easier after a
QR factorization for A has been determined. Given A = QR. we first solve
y = Q∗b, and then Rx = y using back substitution.

8 Gram-Schmidt Orthogonalization

The modified Gram-Schmidt algorithm is more stable than the classical
Gram-Schmidt algorithm and produces the same result by performing the
operations in a different order. The algorithm is provided in Figure 6.

Theorem 19. Both the classical Gram-Schmidt and modified Gram-Schmidt
algorithms require ∼ 2mn2 flops to compute a QR factorization of a m × n
matrix.

9 MATLAB

This section is skipped.

9

Figure 7: Two possible Householder reflectors such that x is mapped onto
the span of e1.

10 Householder Triangularization

The Householder triangularization method uses unitary matrices to turn a
matrix A upper-triangular. Algebraically,

QnQn−1 · · ·Q1A = R =⇒ A = Q∗
1 · · ·Q∗

n−1Q
∗
nR.

Each Q is of the form of (I − 2P) where P is some orthogonal projector,
P = vv∗

v∗v
. It can be shown fairly easily that (I − 2P) is unitary as it simply

reflects across the span of v. As can be seen in Figure 7, there are two
possible such reflectors. Choosing v = (x1)∥x∥e1 + x satisfies the desired
properties and chooses the reflector that moves x further, which allows for
more stability.

We first choose x1 to be the first row of A, and applying Q1 = (I−2P) to
A results in a matrix where the first column has all zeros below the first entry.
We then choose x2 to be the second column of Q1A from entries two down,
choose Q2 similarly, and pad Q2 with the identity column and row above and
behind it, to get Q2Q1A having a “diagonal” first and second columns. This
process repeats until the product is fully diagonal. The algorithm is provided
in Figure 8.

Note that the Householder algorithm in Figure 8 constructs (in-place)
the upper-triangular matrix R, and vectors vk. The vectors vk are the same
as those used for the Householder reflectors. They can be used to implicitly
calculate the product Q∗b or Qx. Those are provided in Figure 9. Note that

10

Figure 8: Householder QR Factorization algorithm.

Figure 9: Compute Q∗b or Qx from v vectors.

from Figure 9, the matrix Q can be found explicitly by multiplying Q by
each of the identity vectors to produce each column of Q.

The work for Householder orthogonalization is ∼ 2mn2 − 2
3
n3 flops.

11 Least Squares Problems

In general, equations of the form Ax = b where A ∈ Cm×n with m > n and
b ∈ Cm have no solutions. Such systems of equations are called overdeter-
mined. Given a “solution” x ∈ Cn, the residual is r = b− Ax ∈ Cm. The
general (linear) least squares problem involves finding a solution x ∈ Cn

such that ∥b− Ax∥2 is minimized.

Theorem 20. Let A ∈ Cm×n (m ≥ n) and b ∈ Cm be given. A vector x ∈ Cn

minimizes the residual norm ∥r∥2 = ∥b− Ax∥2 if and only if r ⊥ range(A),
this is equivalent to

11

Figure 10: Illustration of least squares in R2.

1. A∗r = 0,

2. or A∗Ax = A∗b,

3. or Pb = Ax

where P ∈ Cm×m is the orthogonal projector onto range(A). This is illus-
trated in Figure 10. The n × n system of equations in A∗Ax = A∗b, known
as the normal equations, is nonsingular if and only if A has full rank. Con-
sequently, the solution is unique if and only if A has full rank.

Given by the normal equations, if A is full rank, then the solution is
unique and given by

x = (A∗A)−1A∗b.

We then denote the pseudoinverse of A as A+ ∈ Cn×m where

A+ = (A∗A)−1A∗.

There are three primary algorithms described for solving such problems.
They are all presented in Figure 11.

The method of normal equations essentially involves solving for the
pseudoinverse, but utilizes Choelsky factorization to take advantage of using
back-substitution to solve triangular systems. This method requires ∼ mn2+
1
3
n3 flops.
The method of QR factorization involves solving after a reduced QR

decomposition has been computed. This is because then A∗Ax = A∗b =⇒

12

Figure 11: Three methods for solving the least squares problem.

13

R̂x = Q̂∗b which involves multiplication by a unitary matrix followed by
back-substituting to solve for x. This method requires ∼ 2mn2 + 2

3
n3 flops.

The method of SVD is nearly the same as in the QR case, but instead
the equation simplifies to Σ̂V ∗x = Û∗b. This method requires ∼ 2mn2+11n3

flops.
If speed is the sole consideration, then the normal equations method may

be best. If stability is important, then QR factorization is recommended.
And if A is near rank-deficient, then it turns out that the SVD method may
be best.

12 Conditioning and Condition Numbers

Define a problem as a function f : X → Y where X is our state of data
and Y is our set of solutions. Define a problem instance as the behavior
of f on a specific input x ∈ X.

A well-conditioned problem (instance) is one with the property that
small perturbations to x yield small changes in f(x). Otherwise it is called
ill-conditioned.

Let δx ∈ X denote a small perturbation (small norm in X). And denote
δf = f(x + δx)− f(x). Then we define the absolute condition number,
κ̂(x) or just κ̂, of f at x by

κ̂ = lim
δ→0

sup
∥δx∥<δ

∥δf∥
∥δx∥

.

Define the relative condition number, κ(x) or just κ, of f at x by

κ = lim
δ→0

sup
∥δx∥<δ

(
∥δf∥
∥f(x)∥

/
∥δx∥
∥x∥

)
= lim

δ→0
sup

∥δx∥<δ

κ̂

/
∥f(x)∥
∥x∥

.

In the case that f is differentiable, we use the first-order approximation
δf(x) ≈ J(x)δx where J(x) is the Jacobian of f . This simplifies our equations
to

κ̂ = ∥J(x)∥, κ = ∥J(x)∥
/

∥f(x)∥
∥x∥

.

Typically we focus on the relative condition number, and wish for it to
be small.

14

A frequently appearing value is the relative norm of a square, nonsingular
matrix

κ(A) := ∥A∥
∥∥A−1

∥∥.
We call this the condition number of A.

Theorem 21. Let A ∈ Cm×m be nonsingular and consider the equation
Ax = b. The problem of computing b, given x, has condition number

κ = ∥A∥∥x∥
∥b∥

≤ κA

with respect to perturbing x. The problem of computing x, given b, has
condition number

κ =
∥∥A−1

∥∥ ∥b∥
∥x∥

≤ κ(A)

with respect to perturbing b.

We will typically only focus on ∥·∥ = ∥·∥2, in which case

κ(A) =
σ1

σn

,

where σ1 is the largest singular value and σn is the smallest singular value.
Note that if A is not full-rank and σn = 0, then we say κ(A) = ∞.

Theorem 22. Let b be fixed and consider the problem of computing x =
A−1b where A is square and nonsingular. The condition number of this
problem with respect to perturbations in A is κ(A).

13 Floating Point Arithmetic

IEEE stores decimal numbers in a way such that the number of possible
floating point numbers between [1, 2] is the same as the number between
[2, 4] and [2n, 2n+1]. Gaps between numbers are never larger than 2−52 ≈
2.22× 10−16.

We define ϵmachine as a sort of resolution or best accuracy of our computer.
This is typically equal to 2−53 ≈ 1.11 × 10−16. The distance between a real
number and its closest floating point approximation is always smaller than
ϵmachine in relative terms.

fl(x) = x(1 + ϵ), |ϵ| ≤ ϵmachine.

15

For any floating point operation ·c (could represent addition, subtraction,
multiplication, or division), and for any x, y that are floating point numbers,
there exists ϵ with |ϵ| ≤ ϵmachine such that

x ·c y = (x · y)(1 + ϵ),

where · is the true mathematical operation. This is called the fundamental
axiom of floating point arithmetic.

14 Stability

Given a problem f : X → Y , we define an algorithm as another map
f̃ : X → Y where f(x) is the true solution given data x, and f̃(x) is the
computed solution.

We define the absolute error of a computation as
∥∥∥f̃(x)− f(x)

∥∥∥, and
we define the relative error as∥∥∥f̃(x)− f(x)

∥∥∥
∥f(x)∥

.

We call f̃ accurate for a problem f if∥∥∥f̃(x)− f(x)
∥∥∥

∥f(x)∥
= O(ϵmachine).

We call an algorithm stable if for each x ∈ X, there exists x̃ ∈ X with

∥x̃− x∥
∥x∥

= O(ϵmachine)

such that ∥∥∥f̃(x)− f(x̃)
∥∥∥

∥f(x̃)∥
= O(ϵmachine).

In words, a stable algorithm gives nearly the right answer to nearly the right
question.

More strictly, we call an algorithm backward stable if for each x ∈ X,
there exists x̃ ∈ X with

∥x̃− x∥
∥x∥

= O(ϵmachine)

16

such that
f̃(x) = f(x̃).

In words, a backward stable algorithm gives exactly the right answer to nearly
the right question.

Strictly, a function f(ϵmachine) = O(ϵmachine) means that in the limit as
ϵmachine → 0, there exists a positive constant C such that

|f(ϵmachine)| ≤ Cϵmachine.

Theorem 23. For problems f and algorithms f̃ defined on finite-dimensional
spaces X and Y , the properties of accuracy, stability, and backward stability
all hold or fail to hold regardless of choice of norms on X and Y .

15 More on Stability

This section includes examples of stable and unstable algorithms. They find
the dot product to be backward stable, the outer product to be stable but
not backward stable, and addition x + 1 to not be backward stable when
x ≈ 0 (as errors are large relative to |x|). But addition x + y is backward
stable. Finding the roots of a polynomial is unstable.

Theorem 24. Suppose a backward stable algorithm is applied to solve a
problem f : X → Y with condition number κ on a computer satisfying the
above axioms. Then the relative errors satisfy∥∥∥f̃(x)− f(x)

∥∥∥
∥f(x)∥

= O(κϵmachine).

16 Stability of Householder Triangularization

An experiment was done where random matrices were computed, and House-

holder QR factorizations were done. It was found that the errors
∥∥∥Q̃−Q

∥∥∥
and

∥∥∥R̃−R
∥∥∥ were quite large, but the error

∥∥∥A− Q̃R̃
∥∥∥ was quite small. It

turns out that the first two were examples of forward errors, which is due
to the problem being ill-conditioned rather than the algorithm being unsta-
ble. But the error in Q̃R̃ is the backward error or the residual. The
smallness of this value suggests that the algorithm itself is backward stable.

17

Theorem 25. Let the QR factorization A = QR of a matrix A ∈ Cm×n be
computed by Householder factorization on a computer satisfying the above
axioms, and let Q̃ and R̃ be the resulting computed terms. Then we have

Q̃R̃ = A+ δA,
∥δA∥
∥A∥

= O(ϵmachine

for some δA ∈ Cm×n. In words, the solution Q̃R̃ is backward stable relative
to perturbations in A.

Using that Householder QR factorization is backward stable, and that
both matrix multiplication by a unitary matrix and back-substitution are
also backward stable, we get the following theorem.

Theorem 26. The algorithm for solving Ax = b where A ∈ Cm×m for x by
first finding A = QR by Householder Triangularization, and then solving y =
Q∗b, and finally Rx = y by back-substitution is backward stable, satisfying

(A+∆A)x̃ = b,
∥∆A∥
∥A∥

= O(ϵmachine)

for some ∆A ∈ Cm×m.

Theorem 27. The solution x̃ as computed above satisfies

∥x̃− x∥
∥x∥

= O(κ(A)ϵmachine).

17 Stability of Back Substitution

Solving Rx = b where R is upper (or lower) triangular is fairly straightfor-
ward through the method of back subtitution, in which the last (first)
element of x is able to be directly solved for, and then each following element
is able to be solved for iteratively using knowledge of already calculated el-
ements of x. This algorithm is provided in Figure 12, and it requires ∼ m2

flops for R ∈ Cm×m.

Theorem 28. Let the back subtitution algorithm in Figure 12 be used on
a computer satisfying the desired axioms. This algorithm is backward stable
in the sense that it generates a computed solution x̂ ∈ Cm satisfying

(R + δR)x̃ = b

18

Figure 12: Back substitution algorithm

for some upper-triangular δR ∈ Cm×m with

∥δR∥
∥R∥

= O(ϵmachine).

Specifically, for each i, j,

|δri,j|
|ri,j|

≤ mϵmachine +O(ϵ2machine).

So we can see that for fixed m, computing x is backward stable in per-
turbing R. The larger R’s dimension is, the more instability we can expect.

18 Conditioning of Least Squares Problems

For the least squares problem Ax = b, we take A and b to be data for our
problem, while x and y := Ax are said to be the solutions. This means we
can define conditioning numbers for the least squares problem in terms of
perturbing A or b, and the resulting effect on x or y. To do this we require
additional parameters.

First, we will use the the conditioning number of the matrix A, κ(A).
If A is square, it is given by ∥A∥∥A−1∥ = σ1

σm
, and in the rectangular case

it is given by ∥A∥∥A+∥ = σ1

σn
. Recall that the pseudoinverse of A is given

by A+ = (A∗A)−1A∗. We also define the parameter θ that measures the
closeness of the fit

θ = arccos
∥Ax∥
∥b∥

.

19

Figure 13: Least squares illustration.

Finally we define the parameter η of how much ∥y∥ = ∥Ax∥ falls short of its
maximum possible value ∥A∥∥x∥,

η =
∥A∥∥x∥
∥y∥

.

Note that the parameters lie in the ranges

1 ≤ κ(A) ≤ ∞, 0 ≤ θ ≤ π/2, 1 ≤ η ≤ κ(A).

The least squares problem is again illustrated in Figure 13.

Theorem 29. Let b ∈ Cm and A ∈ Cm×m of full rank be fixed. the least
squares problem has 2-norm relative condition numbers describing sensitivi-
ties of x and y to perturbations in b and A in Figure 14. The results for the
first row are exact and the results in the second row are upper bounds.

19 Stability of Least Squares Problems

Theorem 30. Let the full-rank least squares problem be solved by House-
holder triangularization on a computer satisfying the desired axioms. This
algorithm is backward stable in the sense that the computed solution x̃ has
the properties that ∥(A+ δA)x̃− b∥ is minimized and

∥δA∥
∥A∥

= O(ϵmachine)

for some δA ∈ Cm×m.

20

Figure 14: Conditioning numbers for least squares problem.

Theorem 31. The solution of the full-rank least squares problem via the
normal equations is unstable. Stability can be achieved, however, by restric-
tion to a class of problems in which κ(A) is uniformly bounded above or
tan(θ)/η is uniformly bounded below.

Theorem 32. The solution of the full-rank least squares problem by the
SVD is backward stable.

20 Gaussian Elimination

Gaussian Elimination of LU Factorization is a process of generating
A = LU by triangular triangularization where L is unit lower triangular (1s
on diagonal and 0s above), and U is lower triangular (0s below diagonal).
The algorithm is provided in Figure 15, and it requires ∼ 2

3
m3 flops. In

homework, we showed that a nonsingular matrix had an LU factorizaion
from this algorithm if and only if the upper k × k block for 1 ≤ k ≤ m of A
is nonsingular. Or else you can run into a divide by zero error.

21 Pivoting

In partial pivoting, we follow the same algorithm as Gaussian Elimina-
tion, yet we perform row interchanges at each step so that in the case A is
nonsingular, you are guaranteed to run to completion. This is still ∼ 2

3
m3

flops, and the algorithm is displayed in Figure 16. It results in a factorization
PA = LU where P is a permutation matrix.

21

Figure 15: Gaussian elimination without pivoting algorithm.

Figure 16: Gaussian elimination with partial pivoting algorithm.

22

In complete pivoting, instead of simply scanning the current row for
the largest value in absolute value, you search the entire bottom right block,
resulting in larger number of flops.

22 Stability of Gaussian Elimination

Theorem 33. Let the factorization A = LU of a nonsingular matrix A ∈
Cm×m be computed by Gaussian elimination without pivoting on a computer
satisfying the desired axions. If A has an LU factorization, then for all
sufficiently small ϵmachine, the factorization completes successfully in floating
point arithmetic, and the computed matrices L̃ and Ũ satisfy

L̃Ũ = A+ δA,
∥δA∥

∥L∥∥U∥
= O(ϵmachine)

for some δA ∈ Cm×m.

Note that we make no claims about the errors of L̃ or Ũ respectively, but
their product.

Define the growth factor for a matrix A to be

ρ =
maxi,j |uij|
maxi,j |aij|

.

If ρ is of order 1, not much growth has taken place and the elimination
process is stable. If larger, we expect instability.

Theorem 34. Let the factorization PA = LU of a matrix A ∈ Cm×m be
computed by Gaussian elimination with partial pivoting. Then the computed
matrices P̃ , L̃, and Ũ satisfy

L̃Ũ = P̃A+ δA,
∥δA∥
∥A∥

= O(ρϵmachine)

for some δA ∈ Cm×m, where ρ is the growth factor for A. If |lij| < 1 for
each i > j, implying that there are no ties in the selection of pivots in exact
arithmetic, then P̃ = P for all sufficiently small ϵmachine.

So in fact this algorithm is not backwards stable unless ρ = O(1).
It can be shown that in the worst-case, ρ = 2m−1 where A is m × m.

However, in practice, we have at most ρ = O(
√
m) meaning that nearly

always, we can refer to this algorithm as backward stable.

23

23 Cholesky Factorization

A matrix A ∈ Rm×m is symmetric if A = AT . It also satisfies xTAy = yTAx
for all x, y ∈ Rm. Equivalently, A ∈ Cm×m is hermitian if A = A∗, and
satisfies both x∗Ay = y∗Ax and x∗Ax ∈ R for all x, y ∈ Cm.

A matrix A ∈ Cm×m is hermitian positive definite, or just positive
definite if it is hermitian and x∗Ax > 0 for all x ∈ Cm nonzero. A then
satisfies the following properties

• If X ∈ Cm×n is full rank with m ≥ n, then X∗AX is also hermitian
positive definite.

• Any principal submatrix of A is also hermitian positive definite (of the
form P ∗AP for some permutation matrix).

• Every diagonal element of A is a positive real number.

• The eigenvalues of A are positive real numbers (if and only if for her-
mitian matrices).

• A’s eigenvectors form an orthogonal set.

Cholesky factorization is a method of writing A = R∗R where A is
positive definite, and R is upper triangular. One step of it looks like

A =

[
a11 w∗

w K

]
=

[
α 0

w/α I

] [
1 0
0 K − ww∗/a11

] [
α w∗/α
0 I

]
where α =

√
a11. It can be shown that K −ww∗/a11 is also positive definite,

hence we inductively perform the same prodedure on that lower submatrix
until we are left with R∗IR = A or A = R∗R.

Theorem 35. Every hermitian positive definite matrix A ∈ Cm×m has a
unique Cholesky factorization.

The full algorithm is displayed in Figure 17. In total, it requires ∼ 1
3
m3

flops.

Theorem 36. Let A ∈ Cm×m be hermitian positive definite, and let a
Cholesky factorization of A be computed by the algorithm in Figure 17 on a
computer satisfying the assumed axioms. For sufficiently small ϵmachine, this

24

Figure 17: Algorithm for Cholesky Factorization.

process is guaranteed to run to completion generating a computed factor R̃
that satisfies

R̃∗R̃ = A+ δA,
∥δA∥
∥A∥

= O(ϵmachine)

for some δA ∈ Cm×m.

Cholesky can then be used to solve Ax = b, and that is backward stable.
It involves R∗Rx = b, solving R∗y = b for y, then Rx = y for x.

Theorem 37. The solution of hermitian positive definite systems Ax = b via
Cholesky factorization is backward stable, generating a computed solution x̃
that satisfies

(A+∆A)x̃ = b,
∥∆A∥
∥A∥

= O(ϵmachine)

for some ∆A ∈ Cm×m.

24 Iterative Methods

Suppose we wish to solve the matrix equation Ax = b. We perform matrix-
splitting, writing A = M −N where M is invertible, and then we can refor-
mulate the problem as

x = M−1Nx+M−1b = Tx+ c.

We then have an initial guess x0, and generate the sequence

x(n) = Tx(n−1) + c.

25

We know that if x is a solution to Ax = b, then x = Tx+ c. And

x− x(n) = Tx− Tx(n−1) = T (x− x(n−1)) = T n(x− x(0)),

so x(n) → x if and only if T n → 0. One sufficient condition to this is ∥T∥ < 1
as ∥T n∥ ≤ ∥T∥n → 0.

Define the spectral radius of a matrix T to be the largest eigenvalue of
T in absolute value, denoted ρ(T).

Theorem 38. T n → 0 as n → ∞ if and only if ρ(T) < 1.

Assume A ∈ Cm×m is a matrix with nonzero diagonals. Split A into
D+L+U where D is the diagonal component, L is the below-diagonal, and
U is the above-diagonal.

In the Jacobi Method, we split A = D − (−L − U), and then achieve
the form

x(n) = −D−1(L+ U)x(n−1) +D−1b = TJx
(n−1) + c.

Note that D−1 is simply the inverted diagonals. Rewriting this component
form we see

x
(n)
i =

1

aii

(
−
∑
j ̸=i

Aijx
(n−1)
j + bi

)
.

In the Gauss-Seidel (G.S.) Method, we split A = L+D− (−U), and
then achieve the form

x(n) = −(D + L)−1(U)x(n−1) + (D + L)−1b

= TGSx
(n−1) + c

= −D−1Lx(n) −D−1Ux(n−1) +D−1b.

Using the last equality and writing this component form we see

x
(n)
i =

1

aii

(
−
∑
j<i

Aijx
(n)
j −

∑
j>i

Aijx
(n−1)
j + bi

)

where we must first solve for x
(n)
1 , x

(n)
2 , . . . , x

(n)
i−1 before we can solve for x

(n)
i ,

but then we are using updated values in each calculation.

26

In the Successive Over Relaxation (SOR) Method, we use the same
splitting as G.S., but introduce a parameter ω > 0, to achieve

x(n) = (D + ωL)−1(D − ω(D + U))x(n−1) + ω(D + ωL)−1b

= TSORx
(n−1) + c

= ωD−1(−Lx(n) − Ux(n−1) + b) + (1− ω)x(n−1).

Or component-wise,

x
(n)
i =

ω

aii

(
−
∑
j<i

Aijx
(n)
j −

∑
j>i

Aijx
(n−1)
j + bi

)
+ (1− ω)x

(n−1)
i .

We call a matrix A ∈ Cm×m strictly row diagonal dominant (SDD)
if for all 1 ≤ i ≤ m,

|Aii| >
∑
j ̸=i

|Aij|.

We call A weakly row diagonally dominant (WDD) if for all 1 ≤
i ≤ m,

|Aii| ≥
∑
j ̸=i

|Aij|,

and for at least one i,

|Aii| >
∑
j ̸=i

|Aij|.

Theorem 39. Gershgorin’s Theorem: Consider A ∈ Cm×m. Any eigen-
value of A is located in one of the closed disks of the complex plane centered
at Aii with radius ri =

∑
j ̸=i |Aij|.

Theorem 40. Strictly diagonally dominant matrices are invertible. (Proof
follows from Gershgorin)

Theorem 41. If A is SDD by rows, then Jacobi and Gauss-Seidel methods
are convergent.

Theorem 42. 1. IfA is symmetric positive definite, then the SORmethod
is convergent if and only if 0 < ω < 2.

2. If A is SDD by rows, then the SOR method is convergent if 0 < ω ≤ 1.

27

3. If A and 2D−A are symmetric positive definite, then the Jacobi method
is convergent.

4. If A is SPD, then the Gauss-Seidel method is convergent.

An m×m matrix A is irreducible if there is no permutation matrix P
such that

P TAP =

[
A11 A12

0 A22

]
.

A directed graph is a finite collection of nodes connected by a finite
collection of directed edges. For any m ×m matrix A, we define it’s adja-
cency graph G(A) to be the graph with m nodes, and an edge from i to
j iff Aij ̸= 0. A graph is strongly connected if for any two nodes, there
exists a path from one to the other and visa-versa.

Theorem 43. A matrix A is irreducible if and only if G(A) is strongly
connected.

Theorem 44. If A is irreducible and WDD, then A is nonsingular.

Theorem 45. If A is symmetric, WDD, irreducible, and has Aii > 0 for
each i, then A is symmetric positive definite.

Theorem 46. Let A be an m×m irreducible matrix. If an eigenvalue of A
lies on the boundary of one of the m Gershgorin disks of A, then it also lies
on the boundary of all of the other Gershgorin disks.

Theorem 47. If A is irreducible and WDD, then both Jacobi and Gauss-
Seidel converge for any initial guess and ρ(TGS) < ρ(TJ) < 1.

25 Solving Nonlinear Equations

In general, we wish to find solutions of f(x) = 0.
A sequence of iterates (xn) is said to converge to α with order p ≥ 1 if

|α− xn+1| ≤ C|α− xn|p, n ≥ 0

for some constant C > 0. When p = 1, we call it linear convergence, in
which case we require C < 1, which we call the rate of convergence.

In the Bisection Algorithm, we assume f is continuous on [a, b], and
that f(a) · f(b) < 0 (signs differ). The algorithm then goes as follows

28

1. Define c := (a+ b)/2.

2. If b− c ≤ ϵ, then return c.

3. If f(b) · f(c) < 0, then set a = c, otherwise set b = c and return to step
1.

Since we cut the interval in half each time, this is a linear method with rate of
convergence 1

2
. In order to reduce the initial interval (increase the accuracy)

by 10−d, we require n ≈ d
log10(2)

≈ d
0.3

iterations.

In Newton’s Method, we assume f is once differentiable everywhere,
begin with some initial guess x0, and then perform the iteration

xn+1 = xn −
f(xn)

f ′(xn)
.

Using a Taylor Series analysis, we can show that if this method converges, it
does so quadratically.

Theorem 48. Assume that f ∈ C2 in some neighborhood of a root α of f
and that f ′(α) ̸= 0. Then given x0 sufficiently close to α, Newton’s method
converges on α with

lim
n→∞

α− xn+1

(α− xn)2
= −1

2

f ′′(α)

f ′(α)
.

Some facts about fixed point iteration, solving x = g(x) with xn+1 =
g(xn):

1. If g is continuous on [a, b] and g([a, b]) ⊂ [a, b], then x = g(x) has at
least one solution on [a, b].

2. If g is also a contraction on [a, b] with |g(x)− g(y)| ≤ λ|x− y| for λ ∈
(0, 1), then there is a unique solution on [a, b], iteration will converge
to it given any x0 ∈ [a, b], and |α− xn| ≤ λn

1−λ
|x1 − x0|.

3. If in addition, g is differentiable on [a, b], then we have λ = maxx∈[a,b] |g′(x)|.

29

Figure 18: Algorithm for Arnoldi Iteration.

26 Krylov Subspace Methods

Suppose we are trying to solve Ax = b where A ∈ Cm×m is nonsingular and
b ∈ Cm.

We define Kyrlov subspaces as

Kn = ⟨b, Ab, . . . , An−1b⟩

where the angle brackets denote span.
An upper Hessenberg matrix is a matrix that has zeros below the first

subdiagonal, or A is upper Hessenberg if aij = 0 for i > j + 1.

Theorem 49. Given an m ×m matrix A, there exists a unitary matrix Q
such that Q∗AQ = H where H is upper Hessenberg. And if A is real, then
Q and H are also real.

One way of factoring a matrix into upper Hessenberg form is through
Arnoldi Iteration which utilizes Gram-Schmidt. The algorithm is displayed
in Figure 18. The algorithm essentially projects onto consecutive Krylov
subspaces.

30

